Studi laju kehilangan massa pada evolusi bintang maharaksasa merah

  • Andi Agung Prawira Negara Universitas Hasanuddin
  • Mahesa Putra Institut Teknologi Bandung
  • Nurwulan Hasanah Universitas Hasanuddin
  • Tasrief Surungan Universitas Hasanuddin
Keywords: Red Supergiant, Massive Stars, Stellar Evolution, Mass Loss

Abstract

The post-main sequence evolution in massive star evolution is a complex process that depends on various stellar model parameters. One of these numerous parameters is stellar mass loss. This study aims to analyze the lifetime of stars in the Red Supergiant (RSG) phase, their evolutionary tracks on the Hertzsprung-Russell (HR) diagram, and several other physical parameters that undergo changes when the mass loss rate during the RSG phase is increased. The Modules for Experiment in Stellar Astrophysics (MESA) program is utilized as a computational tool to create simulations of the evolution of massive star models from the main sequence to the core temperature (Tc) reaching 109 K. The constructed models are non-rotating single stars with initial masses of 12M⊙, 15M⊙, 20M⊙, and 25M⊙, with a metallicity of Z=0.02. The obtained results show that an increase in mass loss rate during the RSG phase significantly influences the evolutionary tracks of massive stars in the post-main sequence phase. Additionally, this phenomenon plays a role in determining the progenitor of massive stars before the occurrence of supernova events. For models with larger masses, an increased mass loss rate does not significantly affect the total mass lost during the RSG phase, but it does influence the duration or lifespan spent in the RSG phase.

Downloads

Download data is not yet available.

References

Bennett, P. D. (2009). Chromospheres and Winds of Red Supergiants: An Empirical Look at Outer Atmospheric Structure. ASP Conference Series, 425, 181. http://arxiv.org/abs/1004.1853

Emily Levesque. (2017). Astrophysics of Red Supergiant. In IOP Astronomy.

Georgy, C. (2012). Yellow supergiants as supernova progenitors: An indication of strong mass loss for red supergiants? Astronomy and Astrophysics, 538(May). https://doi.org/10.1051/0004-6361/201118372

Georgy, C. (2016). Evolution models of red supergiants. Proceedings of the International Astronomical Union, 12(S329), 193–198. https://doi.org/10.1017/S1743921317003179

Georgy, C., & Ekström, S. (2015). Mass Loss of Red Supergiants: A Key Ingredient for the Final Evolution of Massive Stars. EAS Publications Series, 71–72, 41–46. https://doi.org/10.1051/eas/1571007

Giannone, P. (1967). Sequences of Inhomogeneous Models for Helium-Burning Stars. zap, 65, 226. http://ukads.nottingham.ac.uk/abs/1967ZA.....65..226G

Heger, A., Fryer, C. L., Woosley, S. E., Langer, N., & Hartmann, D. H. (2003). How Massive Single Stars End Their Life. The Astrophysical Journal, 591(1). https://doi.org/10.1086/375341

Hernández-Cervantes, L., Pérez-Rendón, B., Santillán, A., García-Segura, G., & Rodríguez-Ibarra, C. (2019). Enhanced mass loss rates in red supergiants and their impact on the circumstellar medium. Revista Mexicana de Astronomia y Astrofisica, 55(2), 161–175. https://doi.org/10.22201/ia.01851101p.2019.55.02.04

Hirschi, R., Chiappini, C., Meynet, G., Ekström, S., & Maeder, A. (2007). Mass loss and very low-metallicity stars. AIP Conference Proceedings, 948(September), 397–404. https://doi.org/10.1063/1.2818999

Lamers, J. S. V. A. de K. H. J. G. L. M. (2004). Mass-loss predictions for O and B stars as a function of metallicity. Astronomy and Astrophysics, 814, 803–814. https://doi.org/10.1051/0004-6361

Massey, P. (2003). Massive Stars in the Local Group: Implications for Stellar Evolution and Star Formation. Annual Review of Astronomy and Astrophysics, 41(1982), 15–56. https://doi.org/10.1146/annurev.astro.41.071601.170033

Mauron, N., & Josselin, E. (2011). The mass-loss rates of red supergiants and the de Jager prescription. Astronomy and Astrophysics, 526(19). https://doi.org/10.1051/0004-6361/201013993

Meynet, G., Chomienne, V., Ekström, S., Georgy, C., Granada, A., Groh, J., Maeder, A., Eggenberger, P., Levesque, E., & Massey, P. (2015). Impact of mass-loss on the evolution and pre-supernova properties of red supergiants? Astronomy and Astrophysics, 575. https://doi.org/10.1051/0004-6361/201424671

Nieuwenhuijzen, H., & de Jager, C. (1990). Parametrization of stellar rates of mass loss as functions of the fundamental stellar parameters M, L, and R. Astronomy and Astrophysics, 231(134–136).

Paxton, B., Bildsten, L., Dotter, A., Herwig, F., Lesaffre, P., & Timmes, F. (2010). Modules for Experiments in Stellar Astrophysics (MESA). Astrophysical Journal, Supplement Series, 192(1), 1–110. https://doi.org/10.1088/0067-0049/192/1/3

Paxton, B., Bildsten, L., Dotter, A., Herwig, F., Lesaffre, P., & Timmes, F. (2011a). Modules for Experiments in Stellar Astrophysics (MESA). Astrophysical Journal, Supplement Series, 192(1), 1–110. https://doi.org/10.1088/0067-0049/192/1/3

Paxton, B., Bildsten, L., Dotter, A., Herwig, F., Lesaffre, P., & Timmes, F. (2011b). Modules for Experiments in Stellar Astrophysics (MESA). Astrophysical Journal, Supplement Series, 192(1). https://doi.org/10.1088/0067-0049/192/1/3

Paxton, B., Cantiello, M., Arras, P., Bildsten, L., Brown, E. F., Dotter, A., Mankovich, C., Montgomery, M. H., Stello, D., Timmes, F. X., & Townsend, R. (2013). Modules for experiments in stellar astrophysics (MESA): Planets, oscillations, rotation, and massive stars. Astrophysical Journal, Supplement Series, 208(1), 1–45. https://doi.org/10.1088/0067-0049/208/1/4

Paxton, B., Marchant, P., Schwab, J., Bauer, E. B., Bildsten, L., Cantiello, M., Dessart, L., Farmer, R., Hu, H., Langer, N., Townsend, R. H. D., Townsley, D. M., & Timmes, F. X. (2015). Modules for Experiments in Stellar Astrophysics (MESA): Binaries, pulsations, and explosions. Astrophysical Journal, Supplement Series, 220(1), 1–43. https://doi.org/10.1088/0067-0049/220/1/15

Paxton, B., Schwab, J., Bauer, E. B., Bildsten, L., Blinnikov, S., Duffell, P., Farmer, R., Goldberg, J. A., Marchant, P., Sorokina, E., Thoul, A., Townsend, R. H. D., & Timmes, F. X. (2018). Modules for experiments in stellar astrophysics (mesa): convective boundaries, element diffusion, and massive star explosions. The Astrophysical Journal Supplement Series, 234(2), 34. https://doi.org/10.3847/1538-4365/aaa5a8

Paxton, B., Smolec, R., Schwab, J., Gautschy, A., Bildsten, L., Cantiello, M., Dotter, A., Farmer, R., Goldberg, J. A., Jermyn, A. S., Kanbur, S. M., Marchant, P., Thoul, A., Townsend, R. H. D., Wolf, W. M., Zhang, M., & Timmes, F. X. (2019). Modules for Experiments in Stellar Astrophysics (MESA): Pulsating Variable Stars, Rotation, Convective Boundaries, and Energy Conservation. The Astrophysical Journal Supplement Series, 243(1), 10. https://doi.org/10.3847/1538-4365/ab2241

Renzo, M., Ott, C. D., Shore, S. N., & De Mink, S. E. (2017). Systematic survey of the effects of wind mass loss algorithms on the evolution of single massive stars. Astronomy and Astrophysics, 603. https://doi.org/10.1051/0004-6361/201730698

Vink, J. S., De Koter, A., & Lamers, H. J. G. L. M. (2000). New theoretical mass-loss rates of O and B stars. Astronomy and Astrophysics, 362(1), 295–309.

Woosley, S. E. (1993). The Evolution of Massive Stars Including Mass Loss: Presupernova Models and Explosion. The Astrophysical Journal, 411, 823–839. https://www.researchgate.net/publication/269107473_What_is_governance/link/548173090cf22525dcb61443/download%0Ahttp://www.econ.upf.edu/~reynal/Civil wars_12December2010.pdf%0Ahttps://think-asia.org/handle/11540/8282%0Ahttps://www.jstor.org/stable/41857625

Yang, M., & Jiang, B. W. (2012). The period-luminosity relation of red supergiant stars in the Small Magellanic Cloud. The Astrophysical Journal, 754(1), 35–58. https://doi.org/10.1088/0004-637X/754/1/35

Yoon, S. C., & Cantiello, M. (2010). Evolution of massive stars with pulsation-driven superwinds during the red supergiant phase. Astrophysical Journal Letters, 717(1). https://doi.org/10.1088/2041-8205/717/1/L62

Published
2023-12-16