Studi bawah permukaan menggunakan metode geolistrik resistivitas dan ground penetrating radar (GPR): Studi kasus di area pembangunan gedung kampus STMKG Tanah Tinggi Tangerang
Abstract
The bedrock is an essential component in the planning of high-rise building construction. The depth of the bedrock and the classification of the rock types above it can serve as crucial considerations in the construction planning of high-rise buildings in a particular area. The presence of bedrock provides guidance for determining the foundation of the building's structure. Bedrock, characterized by its hard texture, also serves as a reference for distributing loads on the ground and understanding the effects of infrastructure development on its surface. In this research, the author focuses on utilizing two methods, namely Electrical Resistivity Tomography (ERT) and Ground Penetrating Radar (GPR), to classify the types of rocks beneath the Earth's surface and identify the bedrock. The primary objective of this study is to identify the depth of the bedrock and classify the types of rocks that constitute the subsurface. Based on the analysis of geoelectric resistivity and ground-penetrating radar data, it can be concluded that the construction area of STMKG Tanah Tinggi Campus in Tangerang has the following layers: the first layer consists of sandy soil, backfill soil, and topsoil with resistivity values ranging from 1.28 Ohm to 4.64 Ohm. The subsequent layer is composed of soft soil with resistivity values ranging from 4.64 Ohm to 7.14 Ohm, and medium soil with resistivity values ranging from 11.0 Ohm to 26.0 Ohm.
Downloads
References
Amir, H., Akmam, A., Bavitra, B., & Azhari, M. (2017). Penentuan Kedalaman Batuan Dasar Menggunakan Metode Geolistrik Tahanan Jenis Dengan Membandingkan Konfigurasi Dipole-Dipole Dan Wenner Di Bukit Apit Puhun Kecamatan Guguk Panjang Kota Bukittinggi. EKSAKTA: Berkala Ilmiah Bidang MIPA, 18(01), 19–30. https://doi.org/10.24036/eksakta/vol18- iss01/13
Annan, A. P. (2002). Ground-Penetrating Radar. 357–438.
Balkaya, Ç., Ekinci, Y. L., Çakmak, O., Blömer, M., Arnkens, J., & Kaya, M. A. (2021). A challenging archaeo-geophysical exploration through GPR and ERT surveys on the Keber Tepe, City Hill of Doliche, Commagene (Gaziantep, SE Turkey). Journal of Applied Geophysics, 186. https://doi.org/10.1016/j.jappgeo.2021.104272
Bermejo, L., Ortega, A. I., Guérin, R., Benito-Calvo, A., Pérez-González, A., Parés, J. M., Aracil, E., Bermúdez de Castro, J. M., & Carbonell, E. (2017). 2D and 3D ERT imaging for identifying karst morphologies in the archaeological sites of Gran Dolina and Galería Complex (Sierra de Atapuerca, Burgos, Spain). Quaternary International, 433, 393–401. https://doi.org/10.1016/j.quaint.2015.12.031
Cheng, P. H., Gerl, Y. I., & Lee, S. L. (2008). An electric resistivity study of the Chelungpu fault in the Taichung Area, Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 19(3), 241–255. https://doi.org/10.3319/TAO.2008.19.3.241(T)
Degroot-Hedlin, C., & Constable, S. (1990). Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics, 55(12), 1613–1624. https://doi.org/10.1190/1.1442813
Diallo, M. C., Cheng, L. Z., Rosa, E., Gunther, C., & Chouteau, M. (2019). Integrated GPR and ERT data interpretation for bedrock identification at Cléricy, Québec, Canada. Engineering Geology, 248, 230–241. https://doi.org/10.1016/j.enggeo.2018.09.011
Gómez-Ortiz, D., & Martín-Crespo, T. (2012). Assessing the risk of subsidence of a sinkhole collapse using ground penetrating radar and electrical resistivity tomography. Engineering Geology, 149–150, 1–12. https://doi.org/10.1016/j.enggeo.2012.07.022
Jatmiko, F. A. W., Mandang, I., & Budiono, K. (2016). Interpretasi Sedimen Bawah Permukaan Tanah Dengan Menggunakan Metode GPR ( Ground Penetrating Radar ) di Daerah Pantai Kulon Progo Daerah Istimewa Yogyakarta. Prosiding Seminar Sains Dan Teknologi FMIPA Unmul, 1(1), 13–17.
Kannaujiya, S., Chattoraj, S. L., Jayalath, D., Champati ray, P. K., Bajaj, K., Podali, S., & Bisht, M. P. S. (2019). Integration of satellite remote sensing and geophysical techniques (electrical resistivity tomography and ground penetrating radar) for landslide characterization at Kunjethi (Kalimath), Garhwal Himalaya, India. Natural Hazards, 97(3), 1191–1208. https://doi.org/10.1007/s11069-019-03695-0
Krzeminska, D., Bloem, E., Starkloff, T., & Stolte, J. (2022). Combining FDR and ERT for monitoring soil moisture and temperature patterns in undulating terrain in south-eastern Norway. Catena, 212(February), 106100. https://doi.org/10.1016/j.catena.2022.106100
Lee, S. C. H., Noh, K. A. M., & Zakariah, M. N. A. (2021). High-resolution electrical resistivity tomography and seismic refraction for groundwater exploration in fracture hard rocks: A case study in Kanthan, Perak, Malaysia. Journal of Asian Earth Sciences, 218(May), 104880. https://doi.org/10.1016/j.jseaes.2021.104880
Loke, M. H. (2004). Tutorial: 2-D and 3-D Electrical Imaging Surveys, 2004 Revised Edition. Tutorial : 2-D and 3-D Electrical Imaging Surveys, July, 136.
Mendoza, R., Rey, J., Martínez, J., Hidalgo, M. C., & Sandoval, S. (2021). Geophysical characterisation of geologic features with mining implications from ERT, TDEM and seismic reflection (Mining District of Linares-La Carolina, Spain). Ore Geology Reviews, 139(PB), 104581. https://doi.org/10.1016/j.oregeorev.2021.104581
Menteri Pekerjaan Umum, P. (2006). PERMEN. Peraturan Menteri Pekerjaan Umum, 3, 5–65.
Metwaly, M., & Alfouzan, F. (2013). Application of 2-D geoelectrical resistivity tomography for subsurface cavity detection in the eastern part of Saudi Arabia. Geoscience Frontiers, 4(4), 469–476. https://doi.org/10.1016/j.gsf.2012.12.005
Muallifah, F. (2009). Perancangan Dan Pembuatan Alat Ukur Resistivitas Tanah, Jurnal Neutrino 1(2), 179–197.
Nurlaili, P. (2020). Pencitraan utilitas bawah permukaan pada segmen area X di Jakarta untuk pembangunan fondasi tol berdasarkan hasil Processing data Ground Penetrating Radar …. Repository.Uinjkt.Ac.Id. http://repository.uinjkt.ac.id/dspace/handle/123456789/54607
Oldenborger, G. A., Routh, P. S., & Knoll, M. D. (2005). Sensitivity of electrical resistivity tomography data to electrode position errors. Geophysical Journal International, 163(1), 1–9. https://doi.org/10.1111/j.1365-246X.2005.02714.x
Ortega-Ramírez, J., Bano, M., Cordero-Arce, M. T., Villa-Alvarado, L. A., & Fraga, C. C. (2020). Application of non-invasive geophysical methods (GPR and ERT) to locate the ancient foundations of the first cathedral of Puebla, Mexico. A case study. Journal of Applied Geophysics, 174, 1–33. https://doi.org/10.1016/j.jappgeo.2020.103958
Pajar, M.W.R., 2023. Identifikasi Jenis Tanah Menggunakan Metode Multi Channel Analysis of Surface Wave (MASW) di Stasiun Geofisika Tangerang. Skripsi. Program Sarjana terapan Geofisika. STMKG. Tangerang Selatan.
Sibul, I., Plado, J., & Jõeleht, A. (2017). Ground-penetrating radar and electrical resistivity tomography for mapping bedrock topography and fracture zones: a case study in Viru-Nigula, NE Estonia. Estonian Journal of Earth Sciences, 66(3), 142.
Suyitno, P, dan Yahya. 1998. The Basement Configuration of the North West Java Area, 3rd Annual Convention of The IPA, Jakarta.
Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied geophysics. In Applied Geophysics Second Edition. Cambridge University Press. Cambridge, New York, Port Chester, Melbourne, Sydney (Vol. 127, Issue 3212, pp. 783–785). https://doi.org/10.1038/127783a0
Udphuay, S., Günther, T., Everett, M. E., Warden, R. R., & Briaud, J. L. (2011). Three-dimensional resistivity tomography in extreme coastal terrain amidst dense cultural signals: Application to cliff stability assessment at the historic D-Day site. Geophysical Journal International, 185(1), 201–220. https://doi.org/10.1111/j.1365-246X.2010.04915.x
Wulandari, R. (2013). Analisis Bawah Permukaan Kelurahan Trikora Dan Sekitarnya Menggunakan Metode GPR (Ground Penetrating Radar) dan Geolistrik. Prosiding Seminar Hasil Penelitian.
Zhang, J., & Revil, A. (2015). Cross-well 4-D resistivity tomography localizes the oil-water encroachment front during water flooding. Geophysical Journal International, 201(1), 343–354. https://doi.org/10.1093/gji/ggv028