

Pengaruh Suhu Annealing Sintesis Nanopartikel TiO2 Fasa Rutile untuk Aplikasi **DSSC pada Fotosuperkapasitor**

Markus Diantoro, Nasikhudin, Septia Alisa Khofifah

Artikel ini telah dipresentasikan pada kegiatan Seminar Nasional Fisika (Sinafi 9.0) Universitas Pendidikan Indonesia, Bandung, Indonesia 23 September 2023

Abstract

Photosupercapacitors are integrated devices that combine dye-sensitized solar cells (DSSC) and supercapacitors. This device functions as an energy conversion as well as energy storage in one system. The photoanode is one of the important parts of the DSSC in converting photons into electrons. TiO2 semiconductor material-based photoanodes are often used because of their good light-absorbing ability. This study aims to determine the effect of annealing temperature variations on the synthesis of rutile phase TiO2 in photosupercapacitor applications. The coprecipitation method was used in the synthesis of TiO2 with variations in annealing temperature 400 °C, 500 °C, 600 °C, and 700 °C. Characterization of TiO2 structure and morphology using XRD and SEM-EDX. Fabrication of photosupercapacitors was carried out using the sandwich method. XRD results show that there are two phases formed, namely anatase and rutile phases with a tetragonal crystal system in all samples with the largest particle size of 40.5 nm at 700 °C annealing temperature. From the SEM-EDX results, it can be seen that the morphology of TiO2 nanoparticles tends to agglomerate and has a mass presentation of Ti in TiO2 particles of 76.08 wt%. Charge-discharge tests on the performance of AC/CB/BaTiO3 electrodes showed a specific capacitance of 15.405 F/g. J-V characterization of the photosupercapacitor showed that the ZnO/TiO2 photoanode had an efficiency of 0.08%.

Keywords: Photosupercapasitor · DSSC · TiO2 · Rutile phase · Annealing temperature

PENDAHULUAN

Energi merupakan salah satu aspek yang paling penting dan mendasar bagi kehidupan seharihari (Abeeb Olalekan et al., 2022). Sumber energi tak terbarukan menjadi sumber energi utama yang digunakan namun menimbulkan polusi dan masalah lingkungan. Oleh karena itu, energi alternatif yang terbarukan seperti energi angin, energi panas bumi, energi matahari, bioenergi, dan lain-lain menjadi sumber energi yang menjanjikan (Pandey et al., 2016). Diantara jenis energi terbarukan, energi matahari menjadi salah satu alternatif karena memiliki keunggulan dan peluang yang baik dengan mengubahnya menjadi energi panas dan listrik (Das et al., 2020).

Banyak sistem energi surya yang telah diimplementasikan dan dipelajari untuk mencapai tujuan yang berbeda, salah satunya adalah perangkat fotovoltaik (PV), khususnya sel surya

Markus Diantoro \bowtie markus.diantoro.fmipa@um.ac.id septia.alisa.2003226@students.um.ac.id Nasikhudin nasikhudin.fmipa@um.ac.id

Septia Alisa Khofifah

Departemen Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Malang. Malang, Indonesia.

How to Cite: Diantoro, M., & Nasikhudin., & Khofifah, A, S., 1 (1) (2023). Pengaruh suhu annealing sintesis nanopartikel TiO2 Fasa Rutile Untuk aplikasi DSSC Pada Fotosuperkapasitor. Prosiding Seminar Nasional Fisika, 1(1), 386-396. http://proceedings.upi.edu/index.php/sinafi

(Pandey et al., 2016). Perkembangan sel surya sebagai sistem konversi energi dimulai dari generasi pertama hingga generasi ketiga yang banyak bermunculan, seperti sel surya polimer (Kurosawa et al., 2017), sel surya kuantum dot (Wang et al., 2018), sel surya perovskite (Du et al., 2015), serta sel surva tersensitasi zat warna (dye sensitized solar cell) yang akhir-akhir ini banyak dikembangkan (Ng et al., 2015). Selain konversi energi panas dari matahari menjadi energi listrik, penyimpanan energi menjadi hal yang penting. Salah satu jenis perangkat yang dapat menyimpan energi listrik adalah superkapassitor (Sawitri et al., 2019). Kombinasi DSSC bersama dengan superkapasitor menawarkan pengurangan resistansi internal sekitar 43% yang meningkatkan dan memperlancar sistem penghantar daya (Diantoro, Yanor, et al., 2020).

Secara umum, fotosuperkapasitor dirancang untuk memaksimalkan proses harvesting energy dan mempercepat konversi energi cahaya ke energi listrik secara efisien, ringan (Liu et al., 2014), dan portable (Xu et al., 2014). Faktor utama yang menentukan performa dari fotosuperkapasitor adalah kompatibilitas bahan pada fotoanoda. Oleh karena itu, pemuatan dye yang tinggi memerlukan luas permukaan spesifik yang tinggi dan laju transfer muatan yang tinggi untuk efisiensi pengumpulan elektron yang tinggi (Lei et al., 2015). Fotoanoda umumnya dibuat dari bahan semikonduktor yang mengimplementasikan sifat-sifat penting seperti celah pita optik dan transfer elektronik (Diantoro, Zaini, et al., 2020). Bahan semikonduktor seperti TiO2 (Shakeel Ahmad et al., 2017), ZnO (Aksoy et al., 2019), SnO2 (Jose, 2019), dan lain-lain telah dipelajari secara ekstensif sebagai bahan fotoanoda dalam DSSC (Umale et al., 2017). Pada praktiknya, DSSC berbasis TiO2 banyak digunakan karena memiliki keunggulan diantaranya rekombinasi elektron lebih cepat dibanding oksida logam lain, kemampuan menyerap cahaya yang sangat tinggi, stabilitas termal tinggi, tidak beracun, biaya fabrikasi yang rendah, serta memiliki sifat optik yang baik (Diantoro et al., 2019) (Masrul et al., 2019).

Scalia, dkk. Berhasil memperkenalkan sistem serbaguna dengan DSSC berbasis TiO2 nanotube dan kapasitor berbasis graphene yang digabungkan. Mereka berhasil meningkatkan efisiensi voltase dengan konfigurasi lain karena perangkat dapat diisi hingga 2,45 V (Scalia et al., 2017). Xu, dkk. Melaporkan fotosuperkapasitor terintegrasi berdasarkan susunan TiO2 nanotube ATO bi-polar dengan perawatan plasma hidrogen selektif pada sub-perangkat superkapasitor berhasil dikembangkan dengan efisiensi penyimpanan energi maksimum sebesar 51,60% dan konversi fotolistrik keseluruhan yang luar biasa dan efisiensi penyimpanan hingga 1,64% dengan respons cepat dan kemampuan yang unggul (Xu et al., 2014). Diantoro, dkk. Berhasil mensintesis TiO2 dengan metode screen printing. Performa fotoanoda TiO2 menghasilkan efisiensi sebesar 2,15% dengan waktu perendaman dye N719 selama 17 jam, sedangkan untuk performa elektroda AC/CB/SBR nilai kapasitas spesifiknya adalah 61,33 F/g. Kemudian untuk kinerja photo-supercapacitor menggunakan variasi susunan seri dan paralel dengan tegangan photo masing-masing 1,75 mV dan 1,49 mV. (Diantoro et al., 2022).

Namun, tio2 menunjukkan mobilitas elektron yang cukup rendah, yang berdampak pada efisiensi konversi. Salah satu cara untuk meningkatkan mobilitas elektron pada TiO2 perlu dilakukan modifikasi morfologi dengan oksida logam lainnya. ZnO merupakan material semikonduktor oksida terbaik dibandingkan material lainnya. ZnO memiliki energi band gap mirip dengan TiO2. Selain itu, ZnO memiliki mobilitas elektron yang lebih tinggi dibandingkan dengan TiO2 (Safriani, 2022).

Berdasarkan kajian-kajian tersebut menunjukkan bahwa TiO2 masih menunjukkan efisiensi yang kecil karena konversi cahaya yang rendah dan penggunaan ZnO menunjukkan

mobilitas tinggi sehingga dapat meningkatkan konversi energi pada DSSC. Namun, hingga saat ini belum banyak kajinya mengenai efek suhu annealing sintesis TiO2 fasa rutile dengan metode kopresipitasi sebagai fotoanoda DSSC dalam fotosuperkapasitor. Oleh karena itu, perlu dilakukan penelitian untuk mengetahui pengaruh suhu annealing dalam sintesis nanopartikel ZnO/TiO2 untuk aplikasi DSSC pada fotosuperkapasitor berbasis material FTO/ZnO/TiO2 pada DSSC dan Al/AC/CB/BaTiO3 pada superkapasitor.

METODE

Penelitian ini dilakukan di Laboratorium Material Departemen Fisika Universitas Negeri Malang. Tujuan dari penelitian ini untuk mengetahui pengaruh variasi suhu annealing pada sintesis nanopartikel TiO₂ fasa rutile dengan menggunakan metode kopresipitasi untuk aplikasi DSSC pada fotosuperkapasitor.

Material

Bahan kimia yang digunakan untuk komponen fotoanoda DSSC yaitu, Substrat FTO, BL-1 blocking layer TiCl3 15% Merck, HCl 37%, NH4OH, Aquades, Acethon, Zinc acetate dehydrate $(Zn(CH_3COO)_2, 2H_2O)$ Sigma-Aldrich 99%, Monoethanolamine (MEA) Sigma-Aldrich 99%, Zinc nitrate Sigma-Aldrich 99%, Polyethylene glycol 6000 (PEG), Triton X100, HNO3, dye N719, elektrolit iodide (mosalyte TDE-250, Solaronix), dan Carbon tape sebagai counter elektroda. Sedangkan untuk komponen elektroda superkapasitor yaitu, substrat aluminium foil, activated carbon (AC), carbon black (CB), BaTiO3, PVDF, Dimethylacetamide (DMAc), dan larutan elektrolit Et4NBF4.

Nanopartikel TiO₂ dengan metode kopresipitasi

Nanopartikel TiO2 disintesis menggunakan metode kopresipitasi dengan melarutkan 15 ml TiCl3 15% ke dalam 15 ml HCl 37% kemudian di stirrer dengan kecepatan stabil selama 20 menit. Kemudian larutan diteteskan NH4OH sedikit demi sedikit hingga berubah warna menjadi biru kehitaman dan disirrer hingga terjadi perubahan menjadi warna putih. Larutan didiamkan selama 24 jam hingga terbentuk endapan. Selanjutnya endapan disaring menggunakan kertas saring dan dicuci menggunakan aquades hingga bersih. Setelah itu presipitat diannealing pada suhu 400°C, 500°C, 600°C, dan 700°C selama 4 jam. Preparasi pasta TiO2 dengan menggerus serbuk TiO2 dan PEG-6000 hingga homogen. Selanjutnya di tetesi HNO3 dan Triton X100 dan digerus kembali hingga homogen dan membentuk pasta TiO2.

Sintesis Fotoanoda DSSC FT0/Zn0/Ti0₂

Substrat FTO disterilisasi menggunakan ethanol dan DI water dengan metode sonikasi selama 15 menit dan dikeringkan. Kemudian pada bagian konduktif substrat FTO dideposisi dengan blocking layer menggunakan metode spin coating dengan kecepatan 3000 rpm selama 30 detik. Selanjutnya Zinc acetate dehydrate $(Zn(CH_3COO)_2, 2H_2O)$ dan etanol distirrer dengan kecepatan 200 rpm pada suhu 70°C selama 45 menit. Kemudian ditambahkan Monoethanolamine (MEA) dan distirrer hingga homogen. Larutan Zinc Acetat dideposisikan pada substrat FTO dengan luas aktif 0.5 x 0.5 cm² dengan metode spray coating pada suhu 100°C selama 10 detik. Kemudian dipanaskan pada suhu 100°C selama 15 menit, 300°C selama

15 menit, dan 500°C selama 30 menit. Film tipis FTO/ZnO direndam dalam larutan Zinc nitrat pada suhu 300°C. Kemudian Film tipis FTO/ZnO diannealing pada suhu 550°C selama 2 jam.

Pasta TiO2 yang diperoleh kemudian dideposisikan pada film tipis FTO/ZnO menggunakan metode screen-printing dengan luas area aktif $0.5 \times 0.5 \ cm^2$ dan dipansakan pada suhu 100°C selama 15 menit, 300°C selama 15 menit, dan 500°C selama 30 menit. Kemudian substrat direndam dalam dye N719 selama 24 jam.

Sintesis dan Fabrikasi Superkapasitor Al/AC/CB/BaTiO₃

Melarutkan PVDF dalam DMAc dan distirrer dengan kecepatan 200 rpm pada suhu 60°C hingga homogen. Kemudian larutan dicampur *active carbon (AC), carbon black (CB),* dan BaTiO₃ hingga homogen. Setelah homogen, elektroda dideposisikan pada substrat Aluminium Foil menggunakan *docter blade* dan diannealing pada suhu 50°C selama 24 jam.

Fabrikasi Fotosuperkapasitor

fotosuperkapasitor Fabrikasi FTO/ZnO/TiO₂//Al/AC/CB/BaTiO₃ dilakukan dengan menggunakan metode sandwich antara DSSC dengan superkapasitor. Film tipis FTO/ZnO/TiO2 dideposisikan carbon tape yang sisi lainnya telah dideposisikan pada aluminium foil. Kemudian dideposisikan elektrolit iodide berupa larutan Mosalyte TDE-250 dengan dideposisikan elektroda meneteskan pada substrat. Selanjutnya superkapasitor Al/AC/CB/BaTiO₃ dan diinjeksi larutan elektrolit Et₄NBF₄.

Karakterisasi Bahan

Karakterisasi struktur dan morfologi meliputi X-ray Diffractometry (XRD), Scanning Electron Microscopy (SEM), dan Energy Dispersive X-ray Spectroscopy (EDX). Untuk mengetahui efisiensi dilakukan uji I-V dan uji Charge-Discharge untuk mengetahui kapasitansi pada superkapasitor.

HASIL DAN PEMBAHASAN

Analisis Struktur Nanopartikel TiO₂

Gambar 1. menunjukkan pola XRD serbuk nanopartikel TiO₂ yang disintesis menggunakan metode kopresipitasi dengan variasi suhu annealing 400°C, 500°C, 600°C dan 700°C. Analisis fasa menggunakan aplikasi Origin Pro menunjukkan puncak difraksi $2\theta = 25$ ° dan $2\theta = 27$ ° yang mana keempat sampel memiliki fasa transisi dari fasa anatase berubah menjadi fasa rutile. Pada suhu annealing 700°C fasa rutile yang dihasilkan semakin tinggi.

Sintesis nanopartikel TiO₂ telah dilakukan oleh Fayyadh, dkk. dengan variasi suhu annealing 500°C dan 700°C selama 1 jam. Pada suhu annealing 500°C diperoleh fasa anatase dan pada suhu annealing 700°C diperoleh fasa anatase dan rutile (Fayyadh et al., 2019). Hal ini menunjukkan bahwa semakin tinggi suhu annealing maka ukuran partikel juga akan semakin meningkat (Tobing & Kartika, 2021).

Ukuran partikel rata-rata (D) semua sampel nanopartikel TiO₂ dihitung menggunakan persamaan *Debye-Scherrer*:

$$D = \frac{0.9\lambda}{\beta coscos \,\theta} \tag{1}$$

dimana β adalah FWHM (radian), λ adalah panjang gelombang sinar-X yang digunakan dan θ adalah sudut difraksi (radian) (Galkina et al., 2014). Berdasarkan perhitungan, diperoleh hasil ukuran partikel rata-rata sampel nanopartikel TiO₂ dengan variasi suhu annealing 400°C, 500°C, 600°C, dan 700°C berturut-turut 18.5 nm, 22.8 nm, 25.5 nm, dan 40.5 nm.

Gambar 1. Puncak Difraksi Nanopartikel TiO2 dengan Variasi Suhu Annealing 400°C, 500°C, 600°C, dan 700°C

Karakteristik morfologi dari nanopartikel TiO2 diperoleh dari hasil karakterisasi menggunakan Scanning Electron Microscopy (SEM). Gambar x menunjukkan morfologi permukaan nanopartikel TiO2 pada suhu 400°C, 500°C, 600°C, dan 700°C. Mikrograf SEM struktur mikro seluruh sampel dianalisis menggunakan analisis ImageJ Processing diperoleh rata-rata ukuran partikel setiap sampel seperti ditunjukkan pada Tabel 1. Hasil yang didapatkan menunjukkan bahwa ukuran partikel rata-rata bertambah besar seiring dengan meningkatnya suhu annealing dari 400°C, 500°C, 600°C, dan 700°C. Semua sampel tetrlihat bahwa partikel yang terbentuk cenderung menggumpal (algomerasi).

Karakterisasi EDX untuk menunjukkan komposisi material. Hasil karakterisasi EDX dari nanopartikel TiO2 dengan variasi suhu annealing ditunjukkan pada Gambar x yang menentukan kemurnian bahan yang disiapkan. Berdasarkan hasil analisis unsur Ti dan O sampel TiO2 diperoleh informasi kandungan Ti paling banyak pada suhu annealing 400°C sebesar 76.08 Wt% dan O sebesar 22.04 Wt%. Hal ini menunjukkan bahwa nanopartikel TiO2 mengandung lebih banyak unsur Ti daripada unsur O dan partikel tersebut masih mengandung pengotor seperti unsur C, Si, dan S.

This is an open access article under the <u>CC–BY-SA</u> license

Gambar 2. Mikrograf SEM Nanopartikel TiO2 dengan Variasi Suhu Annealing a.) 400°C, b.) 500°C, c.) 600°C, dan d.) 700°C (dengan perbesaran 20.00kx dan 100.00kx)

d

с

Gambar 3. EDX Nanopartikel TiO₂ dengan Variasi Suhu Annealing a.) 400°C, b.) 500°C, c.) 600°C, dan d.) 700°C

This is an open access article under the <u>CC–BY-SA</u> license

No.	Suhu Annealing	Ukuran Partikel (nm)
1.	400°C	27.5
2.	500°C	32.26
3.	600°C	25.25
4.	700°C	34.2

Tabel 1. Ukuran Nanopartikel TiO2 dengan Variasi Suhu Annealing

Performa Elektroda AC/CB/BaTiO₃

Gambar 4 menunjukkan kurva uji Charge-Discharge untuk mengidentifikasi kinerja elektroda AC/CB/BaTiO3 dengan massa 0,023g. Hasil charge-discharge diperoleh kapasitas spesifik (CS) sebesar 15.405 F/g, densitas energi (Ed) sebesar 1.541Wh/kg dan densitas daya (Pd) sebesar 167.395 W/kg.

Performa Fotovoltaik dari Efisiensi Fotoanoda ZnO/TiO₂

Performa fotovoltaik dari efisiensi fotoanoda ZnO/TiO₂ diperoleh dari hasil pengukuran kurva J-V pada kondisi terang seperti yang ditunjukkan pada Gambar 5. Pengukuran dilakukan dengan menggunakan solar simulator dengan perlakuan penyinaran cahaya dengan intensitas 100 mW.cm⁻² dan luas area aktif 0,25 cm² serta sampel telah dilakukan perendaman *dye* N719 selama 24 jam. Hasil yang diperoleh pada perhitungan efisiensi ditunjukkan pada Tabel 2. Berdasarkan analisis kurva J-V fotoanoda ZnO/TiO₂ bahwa kondisi optimal nanopartikel TiO₂ sebagai fotoanoda DSSC dalam fotosuperkapasitor ketika suhu annealing 600°C yang mengahasilkan nilai efisiensi sebesat 0.08%, Fill factor 0.329, V_{OC} 0.658 volt dan J_{SC} 0.381 mA. cm⁻²

Gambar 4. Kurva Tegangan vs Waktu Elektroda AC/CB/BaTiO3

Gambar 5. Kurva Efisiensi Fotosuperkapasitor pada Keadaan Terang Tabel 2. Parameter Elektrik Berdasarkan Kurva J-V

No.	Suhu Annealing	J _{SC} (mA.cm ⁻²)	V _{OC} (Volt)	Fill Factor	Efisiensi (%)
1.	400°C	0.728	0.004	0	0
2.	500°C	0.368	0.044	2.918	0.04
3.	600°C	0.381	0.658	0.329	0.08
4.	700°C	0.304	0.093	0.292	0.008

SIMPULAN

Pada penelitian ini, serbuk TiO2 telah mengalami proses annealing pada suhu antara 400°C, 500°C, 600°C dan 700°C dalam furnace. Hasil analisis XRD menunjukkan bahwa serbuk TiO2 yang dengan variasi suhu annealing 400°C, 500°C, dan 600°C memiliki puncak difraksi yang terbentuk pada 2θ terdapat 2 fasa yaitu anatase dan rutile, sedangkan pada suhu 700°C dominan pada fasa rutile. Bentuk kristal serbuk TiO2 mencapai kondisi yang optimal sebagai fotoanoda pada fotosuperkapasitor ketika di-annealing pada suhu 600°C yang menghasilkan nilai efisiensi sebesar 0.08%. Nilai efisiensi menurun seiring dengan peningkatan suhu annealing pada sintesis TiO2

UCAPAN TERIMAKASIH

Ucapan terima kasih ditujukan kepada LPPM Universita Negeri Malang atas dukungan dana untuk pelaksanaan kegiatan penelitian dan terima kasih kepada Laboratorium Fisika Material, Laboratorium Sentral, dan Laboratorium Terpadu Universitas Negeri Malang.

DAFTAR PUSTAKA

- Aksoy, S., Gorgun, K., Caglar, Y., and Caglar, M. (2019). Effect of loading & standbye time of the organic dye N719 on the photovoltaic performance of ZnO based DSSC. Journal of Molecular Structure, 1189, 181–186. https://doi.org/10.1016/j.molstruc.2019.04.040
- Das, A., Deshagani, S., Ghosal, P., & Deepa, M. (2020). Redox active and electrically conducting cobalt telluride Nanorods / Poly (1-aminoanthraquinone) composite and photoactive Rose Bengal dye based photo-supercapacitor. Applied Materials Today, 19, 100592. https://doi.org/10.1016/j.apmt.2020.100592
- Diantoro, M., Ittikhad, A. Al, Albadi'Ah, I. V., Latifah, E., Taufiq, A., & Meevasana, W. (2022). Integrated Array of Dye-Sensitized Solar Cells and Supercapacitor for Photo-Supercapacitor Multifunctional Harvesting Device. Journal of Physics: Conference Series, 2243(1). https://doi.org/10.1088/1742-6596/2243/1/012052
- Diantoro, M., Maftuha, D., Suprayogi, T., Iqbal, M. R., Solehudin, Mufti, N., Taufiq, A., Hidayat, A., Suryana, R., & Hidayat, R. (2019). Performance of pterocarpus indicus willd leaf extract as natural dye TiO2-dye/ITO DSsC. Materials Today: Proceedings, 17, 1268–1276. https://doi.org/10.1016/j.matpr.2019.06.015
- Diantoro, M., Yanor, S., Suprayogi, T., Mufti, N., Aripriharta, Taufiq, A., Sunaryono, & Meevasana, W. (2020). Annealing temperature effect of zno seed layer on integrated photosupercapacitor performance. Key Engineering Materials, 851 KEM, 16–24. https://doi.org/10.4028/www.scientific.net/KEM.851.16
- Diantoro, M., Zaini, M. B., Suprayogi, T., Mufti, N., Zulaikah, S., & Hidayat, A. (2020). Effect of (SnO2:TiO2) nanoparticles on charging performance of integrated dye-sensitized solar cellsupercapacitor. AIP Conference Proceedings, 2231(April). https://doi.org/10.1063/5.0002438
- Du, P., Hu, X., Yi, C., Liu, H. C., Liu, P., & Zhang, H. (2015). Self-Powered Electronics by Integration of Flexible Solid-State Graphene-Based Supercapacitors with High Performance Perovskite Hybrid Solar Cells. 1–8. https://doi.org/10.1002/adfm.201500335
- Fayyadh, A. A., Essa, A. F., Batros, S. S., & Shallal, Z. S. (2019). Studying the Crystal Structure , Topography , and Anti-bacterial of a Novel Titania (TiO 2 NPs) Prepared by a Sol-gel Manner. 16(4), 910–917.
- Galkina, O. L., Sycheva, A., Blagodatskiy, A., Kaptay, G., Katanaev, V. L., & Seisenbaeva, G. A. (2014). Surface & Coatings Technology The sol – gel synthesis of cotton / TiO 2 composites and their antibacterial properties. Surface & Coatings Technology, 253, 171–179. https://doi.org/10.1016/j.surfcoat.2014.05.033
- Jose, R. (2019). SnO 2 dye-sensitized solar cells. https://doi.org/10.1016/B978-0-12-813337-8.00007-2
- Kurosawa, T., Gu, X., Gu, K. L., Zhou, Y., Yan, H., Wang, C., Wang, G. N., Toney, M. F., & Bao, Z. (2017). Understanding the Impact of Oligomeric Polystyrene Side Chain Arrangement on the All-Polymer Solar Cell Performance. 1701552, 1–10. https://doi.org/10.1002/aenm.201701552
- Lei, J., Liu, S., Du, K., Lv, S., Liu, C., & Zhao, L. (2015). ZnO at TiO2 architectures for a high efficiency dye-sensitized solar cell. Electrochimica Acta, 171, 66–71. https://doi.org/10.1016/j.electacta.2015.05.014
- Liu, B., Liu, B., Wang, X., Wu, X., Zhao, W., Xu, Z., & Chen, D. (2014). Memristor-Integrated Voltage-Stabilizing Supercapacitor System. 1–6. https://doi.org/10.1002/adma.201401017
- Masrul, M. Z., Suprayogi, T., Diantoro, M., Fuad, A., Latifah, E., & Hidayat, A. (2019). The Effect of Light Irradiation on Performance of Photo-Supercapacitor of FTO/TiO2-ZnO-β Carotene-Quercetin/Carbon/Al/PVDF-BaTiO3/Al. IOP Conference Series: Materials Science and Engineering, 515(1). https://doi.org/10.1088/1757-899X/515/1/012077
- Ng, C. H., Lim, H. N., Hayase, S., Harrison, I., Pandikumar, A., & Huang, N. M. (2015). Potential active materials for photo-supercapacitor: A review. Journal of Power Sources, 296, 169–185. https://doi.org/10.1016/j.jpowsour.2015.07.006

- Olalekan, A, M., Adedokun, O., Bello, T, I., Kareem, A, M., & Kwong Yam, F. (2022). Recent Advances in Photo-supercapacitor: A Mini Review. Advanced Materials Science and Technology, 4(2), 31–49. https://doi.org/10.37155/2717-526x-0402-2
- Pandey, A. K., Tyagi, V. V., Selvaraj, J. A., Rahim, N. A., & Tyagi, S. K. (2016). Recent advances in solar photovoltaic systems for emerging trends and advanced applications. Renewable and Sustainable Energy Reviews, 53, 859–884. https://doi.org/10.1016/j.rser.2015.09.043
- Safriani, L. (2022). Pengaruh Penambahan Nanopartikel ZnO Terhadap Morfologi Nanokomposit TiO2/ZnO. Jurnal Ilmu Dan Inovasi Fisika, 6(2), 182–188. https://doi.org/10.24198/jiif.v6i2.41201
- Sawitri, R. A., Suryanti, L., Zuhri, F. U., & Diantoro, M. (2019). Dielectric Properties of Dirt Sugarcane Sediment (DSS) Extract-BaTiO3 for Organic Supercapacitors. IOP Conference Series: Materials Science and Engineering, 515(1). https://doi.org/10.1088/1757-899X/515/1/012062
- Scalia, A., Bella, F., Lamberti, A., Bianco, S., Gerbaldi, C., Tresso, E., & Pirri, C. F. (2017). A flexible and portable powerpack by solid-state supercapacitor and dye-sensitized solar cell integration. Journal of Power Sources, 359, 311–321. https://doi.org/10.1016/j.jpowsour.2017.05.072
- Shakeel Ahmad, M., Pandey, A. K., & Abd Rahim, N. (2017). Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review. Renewable and Sustainable Energy Reviews, 77(January), 89–108. https://doi.org/10.1016/j.rser.2017.03.129
- Tobing, A. T., & Kartika, D. M. (2021). PENGARUH SUHU KALSINASI TERHADAP UKURAN KRISTAL DAN KOMPOSISI FASA PADA SENYAWA TiO2 THE EFFECT OF CALCINATION TEMPERATURE ON CRYSTAL SIZE AND PHASE COMPOSITION OF TiO2 COMPOUNDS. UNESA Journal of Chemistry, 10(3), 367–373.
- Umale, S. V., Tambat, S. N., Sudhakar, V., Sontakke, S. M., & Krishnamoorthy, K. (2017). Fabrication, characterization and comparison of DSSC using anatase TiO2 synthesized by various methods. Advanced Powder Technology, 28(11), 2859–2864. https://doi.org/10.1016/j.apt.2017.08.012
- Wang, W., Feng, W., Du, J., Xue, W., Zhang, L., Zhao, L., & Li, Y. (2018). Cosensitized Quantum Dot Solar Cells with Conversion Efficiency over 12 %. 1705746, 1–7. https://doi.org/10.1002/adma.201705746
- Xu, J., Wu, H., Lu, L., Leung, S. F., Chen, D., Chen, X., Fan, Z., Shen, G., & Li, D. (2014). Integrated photo-supercapacitor based on Bi-polar TiO2 nanotube arrays with selective one-side plasmaassisted hydrogenation. Advanced Functional Materials, 24(13), 1840–1846. https://doi.org/10.1002/adfm.201303042

